Dissecting the Transcriptional Patterns of Social Dominance across Teleosts

Integr Comp Biol. 2016 Dec;56(6):1250-1265. doi: 10.1093/icb/icw118.

Abstract

In many species, under varying ecological conditions, social interactions among individuals result in the formation of dominance hierarchies. Despite general similarities, there are robust differences among dominance hierarchies across species, populations, environments, life stages, sexes, and individuals. Understanding the proximate mechanisms underlying the variation is an important step toward understanding the evolution of social behavior. However, physiological changes associated with dominance, such as gonadal maturation and somatic growth, often complicate efforts to identify the specific underlying mechanisms. Traditional gene expression analyses are useful for generating candidate gene lists, but are biased by choice of significance cut-offs and difficult to use for between-study comparisons. In contrast, complementary analysis tools allow one to both test a priori hypotheses and generate new hypotheses. Here we employ a meta-analysis of high-throughput expression profiling experiments to investigate the gene expression patterns that underlie mechanisms and evolution of behavioral social phenotypes. Specifically, we use a collection of datasets on social dominance in fish across social contexts, sex, and species. Using experimental manipulation to produce female dominance hierarchies in the cichlid Astatotilapia burtoni, heralded as a genomic model of social dominance, we generate gene lists, and assess molecular gene modules. In the dominant female gene expression profile, we demonstrate a strong pattern of up-regulation of genes previously identified as having male-biased expression and furthermore, compare expression biases between male and female dominance phenotypes. Using a threshold-free approach to identify correlation throughout ranked gene lists, we query previously published datasets associated with maternal behavior, alternative reproductive tactics, cooperative breeding, and sex-role reversal to describe correlations among these various neural gene expression profiles associated with different instances of social dominance. These complementary approaches capitalize on the high-throughput gene expression profiling from similar behavioral phenotypes in order to address the mechanisms associated with social dominance behavioral phenotypes.

Publication types

  • Meta-Analysis

MeSH terms

  • Animals
  • Cichlids / genetics
  • Cichlids / physiology*
  • Female
  • Gene Expression Profiling
  • Male
  • Maternal Behavior / physiology
  • Reproduction
  • Social Dominance*
  • Transcriptome*