Label-Free Single-Molecule Imaging with Numerical-Aperture-Shaped Interferometric Scattering Microscopy

ACS Photonics. 2017 Feb 15;4(2):211-216. doi: 10.1021/acsphotonics.6b00912. Epub 2017 Jan 18.

Abstract

Our ability to optically interrogate nanoscopic objects is controlled by the difference between their extinction cross sections and the diffraction-limited area to which light can be confined in the far field. We show that a partially transmissive spatial mask placed near the back focal plane of a high numerical aperture microscope objective enhances the extinction contrast of a scatterer near an interface by approximately T-1/2, where T is the transmissivity of the mask. Numerical-aperture-based differentiation of background from scattered light represents a general approach to increasing extinction contrast and enables routine label-free imaging down to the single-molecule level.

Keywords: biosensing; interferometric scattering; label-free; single-molecule imaging.