Reversal of DDK-Mediated MCM Phosphorylation by Rif1-PP1 Regulates Replication Initiation and Replisome Stability Independently of ATR/Chk1

Cell Rep. 2017 Mar 7;18(10):2508-2520. doi: 10.1016/j.celrep.2017.02.042.

Abstract

Dbf4-dependent kinases (DDKs) are required for the initiation of DNA replication, their essential targets being the MCM2-7 proteins. We show that, in Xenopus laevis egg extracts and human cells, hyper-phosphorylation of DNA-bound Mcm4, but not phosphorylation of Mcm2, correlates with DNA replication. These phosphorylations are differentially affected by the DDK inhibitors PHA-767491 and XL413. We show that DDK-dependent MCM phosphorylation is reversed by protein phosphatase 1 (PP1) targeted to chromatin by Rif1. Loss of Rif1 increased MCM phosphorylation and the rate of replication initiation and also compromised the ability of cells to block initiation when challenged with replication inhibitors. We also provide evidence that Rif1 can mediate MCM dephosphorylation at replication forks and that the stability of dephosphorylated replisomes strongly depends on Chk1 activity. We propose that both replication initiation and replisome stability depend on MCM phosphorylation, which is maintained by a balance of DDK-dependent phosphorylation and Rif1-mediated dephosphorylation.

Keywords: Cdc7; DNA damage; DNA replication; MCM; Rif1; Xenopus egg cell-free system; checkpoint signaling; human tissue culture.

MeSH terms

  • Animals
  • Ataxia Telangiectasia Mutated Proteins / metabolism
  • Checkpoint Kinase 1 / metabolism*
  • DNA Replication*
  • DNA-Directed DNA Polymerase / metabolism*
  • HeLa Cells
  • Humans
  • Minichromosome Maintenance Proteins / metabolism*
  • Multienzyme Complexes / metabolism*
  • Phosphorylation
  • Protein Phosphatase 1 / metabolism*
  • Protein Serine-Threonine Kinases / metabolism*
  • Protein Subunits / metabolism
  • Replication Origin / genetics
  • S Phase
  • Telomere-Binding Proteins / metabolism*
  • Xenopus laevis

Substances

  • Multienzyme Complexes
  • Protein Subunits
  • Rif1 protein, human
  • Telomere-Binding Proteins
  • ATR protein, human
  • Ataxia Telangiectasia Mutated Proteins
  • CHEK1 protein, human
  • Checkpoint Kinase 1
  • Protein Serine-Threonine Kinases
  • DNA synthesome
  • DNA-Directed DNA Polymerase
  • Protein Phosphatase 1
  • Minichromosome Maintenance Proteins