Genetic disruption of fractalkine signaling leads to enhanced loss of cochlear afferents following ototoxic or acoustic injury

J Comp Neurol. 2018 Apr 1;526(5):824-835. doi: 10.1002/cne.24369. Epub 2017 Dec 17.

Abstract

Cochlear hair cells are vulnerable to a variety of insults like acoustic trauma and ototoxic drugs. Such injury can also lead to degeneration of spiral ganglion neurons (SGNs), but this occurs over a period of months to years. Neuronal survival is necessary for the proper function of cochlear prosthetics, therefore, it is of great interest to understand the mechanisms that regulate neuronal survival in deaf ears. We have recently demonstrated that selective hair cell ablation is sufficient to attract leukocytes into the spiral ganglion, and that fractalkine signaling plays a role in macrophage recruitment and in the survival of auditory neurons. Fractalkine (CX3 CL1), a chemokine that regulates adhesion and migration of leukocytes is expressed by SGNs and signals to leukocytes via its receptor CX3 CR1. The present study has extended the previous findings to more clinically relevant conditions of sensorineural hearing loss by examining the role of fractalkine signaling after aminoglycoside ototoxicity or acoustic trauma. Both aminoglycoside treatment and acoustic overstimulation led to the loss of hair cells as well as prolonged increase in the numbers of cochlear leukocytes. Lack of CX3 CR1 did not affect macrophage recruitment after injury, but resulted in increased loss of SGNs and enhanced expression of the inflammatory cytokine interleukin-1β, when compared to mice with intact CX3 CR1. These data indicate that the dysregulation of macrophage response caused by the absence of CX3 CR1 may contribute to inflammation-mediated neuronal loss in the deafened ear, suggesting a key role for inflammation in the long-term survival of target-deprived afferent neurons.

Keywords: RRID: AB_10013626; RRID: AB_221569; RRID: AB_2313773; RRID: AB_2314897; RRID: IMSR_JAX:005582; RRID: SCR_002668; fractalkine; hearing loss; inflammation; interleukin-1β; macrophages; spiral ganglion neurons.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acoustic Stimulation / adverse effects
  • Animals
  • CX3C Chemokine Receptor 1 / deficiency
  • CX3C Chemokine Receptor 1 / genetics*
  • Cell Survival
  • Disease Models, Animal
  • Evoked Potentials, Auditory, Brain Stem / drug effects
  • Evoked Potentials, Auditory, Brain Stem / physiology
  • Furosemide / toxicity
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • Hair Cells, Auditory / metabolism
  • Hair Cells, Auditory / pathology*
  • Hearing Loss, Noise-Induced / etiology*
  • Hearing Loss, Noise-Induced / metabolism
  • Hearing Loss, Noise-Induced / pathology*
  • Interleukin-1beta / metabolism
  • Intermediate Filaments / metabolism
  • Kanamycin / toxicity
  • Macrophages / pathology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Protein Synthesis Inhibitors / toxicity
  • Signal Transduction / physiology*
  • Spiral Ganglion / pathology*

Substances

  • CX3C Chemokine Receptor 1
  • Cx3cr1 protein, mouse
  • Interleukin-1beta
  • Protein Synthesis Inhibitors
  • Green Fluorescent Proteins
  • Kanamycin
  • Furosemide