Transcription factors orchestrate dynamic interplay between genome topology and gene regulation during cell reprogramming

Nat Genet. 2018 Feb;50(2):238-249. doi: 10.1038/s41588-017-0030-7. Epub 2018 Jan 15.

Abstract

Chromosomal architecture is known to influence gene expression, yet its role in controlling cell fate remains poorly understood. Reprogramming of somatic cells into pluripotent stem cells (PSCs) by the transcription factors (TFs) OCT4, SOX2, KLF4 and MYC offers an opportunity to address this question but is severely limited by the low proportion of responding cells. We have recently developed a highly efficient reprogramming protocol that synchronously converts somatic into pluripotent stem cells. Here, we used this system to integrate time-resolved changes in genome topology with gene expression, TF binding and chromatin-state dynamics. The results showed that TFs drive topological genome reorganization at multiple architectural levels, often before changes in gene expression. Removal of locus-specific topological barriers can explain why pluripotency genes are activated sequentially, instead of simultaneously, during reprogramming. Together, our results implicate genome topology as an instructive force for implementing transcriptional programs and cell fate in mammals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Binding Sites / genetics
  • Cells, Cultured
  • Cellular Reprogramming / genetics*
  • Chromatin Assembly and Disassembly / genetics*
  • Chromosome Structures / genetics*
  • Chromosome Structures / metabolism
  • Dosage Compensation, Genetic / genetics
  • Female
  • Gene Expression Regulation
  • Genome*
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / metabolism
  • Kruppel-Like Transcription Factors / physiology
  • Mice
  • Mice, Transgenic
  • Protein Binding
  • Transcription Factors / physiology*
  • X Chromosome Inactivation / genetics

Substances

  • Klf4 protein, mouse
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • Transcription Factors