Inter-Organ Growth Coordination Is Mediated by the Xrp1-Dilp8 Axis in Drosophila

Dev Cell. 2019 Jun 3;49(5):811-818.e4. doi: 10.1016/j.devcel.2019.03.016. Epub 2019 Apr 18.

Abstract

How organs scale with other body parts is not mechanistically understood. We have addressed this question using the Drosophila imaginal disc model. When the growth of one disc domain is perturbed, other parts of the disc and other discs slow down their growth, maintaining proper inter-disc and intra-disc proportions. We show here that the relaxin-like Dilp8 is required for this inter-organ coordination. Our work also reveals that the stress-response transcription factor Xrp1 plays a key role upstream of dilp8 in linking organ growth status with the systemic growth response. In addition, we show that the small ribosomal subunit protein RpS12 is required to trigger Xrp1-dependent non-autonomous response. Our work demonstrates that RpS12, Xrp1, and Dilp8 form an independent regulatory module that ensures intra- and inter-organ growth coordination during development.

Keywords: Dilp8; Drosophila; Minute; RpS12; Xrp1; coordination; organ growth.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / growth & development*
  • Drosophila melanogaster / metabolism
  • Female
  • Gene Expression Regulation, Developmental
  • Imaginal Discs / growth & development*
  • Imaginal Discs / metabolism
  • Intercellular Signaling Peptides and Proteins / genetics
  • Intercellular Signaling Peptides and Proteins / metabolism*
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • MAP Kinase Signaling System*
  • Male
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Ribosomal Proteins / genetics
  • Ribosomal Proteins / metabolism*
  • Signal Transduction

Substances

  • DNA-Binding Proteins
  • Drosophila Proteins
  • Intercellular Signaling Peptides and Proteins
  • Intracellular Signaling Peptides and Proteins
  • Ribosomal Proteins
  • Xrp1 protein, Drosophila
  • insulin-like peptide 8, Drosophila
  • Protein Serine-Threonine Kinases
  • hpo protein, Drosophila