Mosaic representations of odors in the input and output layers of the mouse olfactory bulb

Nat Neurosci. 2019 Aug;22(8):1306-1317. doi: 10.1038/s41593-019-0442-z. Epub 2019 Jul 22.

Abstract

The elementary stimulus features encoded by the olfactory system remain poorly understood. We examined the relationship between 1,666 physical-chemical descriptors of odors and the activity of olfactory bulb inputs and outputs in awake mice. Glomerular and mitral and tufted cell responses were sparse and locally heterogeneous, with only a weak dependence of their positions on physical-chemical properties. Odor features represented by ensembles of mitral and tufted cells were overlapping but distinct from those represented in glomeruli, which is consistent with an extensive interplay between feedforward and feedback inputs to the bulb. This reformatting was well described as a rotation in odor space. The physical-chemical descriptors accounted for a small fraction in response variance, and the similarity of odors in the physical-chemical space was a poor predictor of similarity in neuronal representations. Our results suggest that commonly used physical-chemical properties are not systematically represented in bulbar activity and encourage further searches for better descriptors of odor space.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Feedback, Physiological
  • Female
  • Male
  • Mice
  • Odorants*
  • Olfactory Bulb / diagnostic imaging
  • Olfactory Bulb / physiology*
  • Olfactory Pathways
  • Sensory Receptor Cells / physiology
  • Smell / physiology*