Burst statistics in an early biofilm quorum sensing model: the role of spatial colony-growth heterogeneity

Sci Rep. 2019 Aug 19;9(1):12077. doi: 10.1038/s41598-019-48525-2.

Abstract

Quorum-sensing bacteria in a growing colony of cells send out signalling molecules (so-called "autoinducers") and themselves sense the autoinducer concentration in their vicinity. Once-due to increased local cell density inside a "cluster" of the growing colony-the concentration of autoinducers exceeds a threshold value, cells in this clusters get "induced" into a communal, multi-cell biofilm-forming mode in a cluster-wide burst event. We analyse quantitatively the influence of spatial disorder, the local heterogeneity of the spatial distribution of cells in the colony, and additional physical parameters such as the autoinducer signal range on the induction dynamics of the cell colony. Spatial inhomogeneity with higher local cell concentrations in clusters leads to earlier but more localised induction events, while homogeneous distributions lead to comparatively delayed but more concerted induction of the cell colony, and, thus, a behaviour close to the mean-field dynamics. We quantify the induction dynamics with quantifiers such as the time series of induction events and burst sizes, the grouping into induction families, and the mean autoinducer concentration levels. Consequences for different scenarios of biofilm growth are discussed, providing possible cues for biofilm control in both health care and biotechnology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / genetics
  • Bacteria / growth & development*
  • Bacterial Proteins / genetics
  • Biofilms / growth & development*
  • Models, Biological*
  • Quorum Sensing / genetics*
  • Signal Transduction / genetics

Substances

  • Bacterial Proteins