Sequence periodicities in chicken nucleosome core DNA

J Mol Biol. 1986 Oct 20;191(4):659-75. doi: 10.1016/0022-2836(86)90452-3.

Abstract

The rotational positioning of DNA about the histone octamer appears to be determined by certain sequence-dependent modulations of DNA structure. To establish the detailed nature of these interactions, we have analysed the sequences of 177 different DNA molecules from chicken erythrocyte core particles. All variations in the sequence content of these molecules, which may be attributed to sequence-dependent preferences for DNA bending, correlate well with the detailed path of the DNA as it wraps around the histone octamer in the crystal structure of the nucleosome core. The sequence-dependent preferences that correlate most closely with the rotational orientation of the DNA, relative to the surface of the protein, are of two kinds: ApApA/TpTpT and ApApT/ApTpT, the minor grooves of which face predominantly in towards the protein; and also GpGpC/GpCpC and ApGpC/GpCpT, whose minor grooves face outward. Fourier analysis has been used to obtain fractional variations in occurrence for all ten dinucleotide and all 32 trinucleotide arrangements. These sequence preferences should apply generally to many other cases of protein-DNA recognition, where the DNA wraps around a protein. In addition, it is observed that long runs of homopolymer (dA) X (dT) prefer to occupy the ends of core DNA, five to six turns away from the dyad. These same sequences are apparently excluded from the near-centre of core DNA, two to three turns from the dyad. Hence, the translational positioning of any single histone octamer along a DNA molecule of defined sequence may be strongly influenced by the placement of (dA) X (dT) sequences. It may also be influenced by any aversion of the protein for sequences in the "linker" region, the sequence content of which remains to be determined.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Chickens
  • Cloning, Molecular
  • DNA*
  • Erythrocytes / analysis
  • Fourier Analysis
  • Nucleosomes / analysis*
  • Oligodeoxyribonucleotides
  • Repetitive Sequences, Nucleic Acid*

Substances

  • Nucleosomes
  • Oligodeoxyribonucleotides
  • DNA