Transcortical reflexes and servo control of movement

Can J Physiol Pharmacol. 1981 Jul;59(7):757-75. doi: 10.1139/y81-112.

Abstract

Sherrington proposed that the major role of proprioceptors is in processing afferent inputs generated by the active movements of the animal itself, and noted that the reflex effects of proprioceptive inputs are "mild." Current experimental results are consistent with the view that the major role of both segmental and transcortical proprioceptive reflexes is in small active movements and active postural stability, with muscle afferent inputs reducing "...errors of muscle length produced by fluctuating levels of motor discharge..." as stated by Goodwin and coworkers in 1978. Exteroceptive reflexes generate intense muscular responses and are of critical importance in prompt reprogramming essential for effective responses to environmental stimuli. Within the motor cortex (MI) there is a caudal region (MI/c) which receives exteroceptive cutaneous inputs and a rostral region (MI/r) which receives proprioceptive inputs. Transcortical reflexes mediated via pyramidal tract neurons (PTNs) of MI/r have properties which are analogous to segmental proprioceptive reflexes: changes of muscle length elicit PTN discharges which oppose the length change and so act to maintain stability. Furthermore, MI/r PTNs which are recruited earliest for small active movements are most sensitive to proprioceptive inputs. Data are not yet available concerning transcortical reflexes via MI/c during voluntary movement, but it is speculated that the cutaneous reflexes via MI/c might be functionally analogous to segmental cutaneous reflexes. Short-latency reflex responses also occur in postcentral (PoC) PTNs, and in this report we present results concerning the properties of PoC PTNs during active and passive movement. Caudal (area 2-5) PoC PTNs were similar to MI PTNs in that they often discharged prior to electromyogram (EMG) activity with active movement, and had different discharge frequencies with different steady state loads, but were unlike most MI PTNs in having the same changes of discharge with active and passive movement. Our finding of PoC discharge prior to movement onset, confirming that of Soso and Fetz in 1980, is discussed in connection with the concept of corollary discharge.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Afferent Pathways / physiology
  • Animals
  • Arm / innervation
  • Electromyography
  • Humans
  • Motor Cortex / physiology*
  • Motor Neurons / physiology
  • Movement*
  • Muscle Spindles / physiology
  • Proprioception
  • Pyramidal Tracts / physiology
  • Reflex / physiology*
  • Sensation / physiology
  • Skin Physiological Phenomena