Site of interaction between saccade signals and vestibular signals induced by head rotation in the alert cat: functional properties and afferent organization of burster-driving neurons

J Neurophysiol. 1995 Jul;74(1):273-87. doi: 10.1152/jn.1995.74.1.273.

Abstract

1. Extracellular spikes of burster-driving neurons (BDNs) were recorded within and immediately below the prepositus hypoglossi nucleus in the alert cat. BDNs were characterized by short-latency activation after stimulation of the contralateral vestibular nerve (latency: 1.4-2.7 ms) and the ipsilateral superior colliculus (latency: 1.7-3.5 ms). Convergence of vestibular and collicular inputs was found in all of 85 BDNs tested. Firing of BDNs increased during contralateral horizontal head rotation and decreased during ipsilateral rotation. A burst of spikes was induced in association with contralateral saccades and quick phases of nystagmus. 2. BDNs showed irregular tonic discharges during fixation. There was no significant correlation between the firing rate during fixation and horizontal or vertical eye position in most BDNs. During horizontal sinusoidal head rotation, the change in firing rate was approximately proportional to and in phase with contralateral head velocity. The phase lag of the response relative to head angular velocity was 13.8 +/- 20.1 degrees (mean +/- SD) at 0.5 Hz and 7.2 +/- 13.5 degrees at 0.2 Hz on the average. The gain was 0.88 +/- 0.25 (spikes/s)/(degrees/s) at 0.5 Hz and 1.19 +/- 0.49 (spikes/s)/(degrees/s) at 0.2 Hz. 3. Quantitative analysis of burst activity associated with saccades or quick phases indicated that the ON direction of BDNs was contralateral horizontal. The number of spikes in the burst was linearly related to the amplitude of the contralateral component of rapid eye movements. The slope of regression line was, on the average, 1.14 +/- 0.48 spikes/deg. There was no significant difference between the mean slopes for saccades and quick phases. The number of spikes depended on the difference between initial and final horizontal eye positions and not on the absolute eye position in the orbit. The mean burst firing rate was proportional to the mean velocity of the contralateral component of rapid eye movements. The slope of the regression line was 0.82 +/- 0.34 (spikes/s)/(degrees/s). Significant correlation was also found between intraburst instantaneous firing rate and instantaneous component eye velocity. 4. Objects presented in the contralateral visual field elicited a brief burst of spikes in BDNs independent of any eye movement. Contralateral saccades to the target were preceded by an early response to the visual stimulus and subsequent response associated with eye movement. 5. Excitation of BDNs produced by stimulation of the ipsilateral superior colliculus was facilitated by contralateral horizontal head rotation. Therefore saccadic signals from the superior colliculus to BDNs may be augmented by vestibular signals during head rotation.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cats
  • Electric Stimulation
  • Electrodes, Implanted
  • Head / physiology*
  • Motor Neurons / physiology*
  • Movement / physiology*
  • Neurons, Afferent / physiology*
  • Photic Stimulation
  • Rotation
  • Saccades / physiology*
  • Stereotaxic Techniques
  • Superior Colliculi / physiology
  • Vestibule, Labyrinth / physiology*