Uptake of potassium by nonmyelinating Schwann cells induced by axonal activity

J Neurophysiol. 1994 Dec;72(6):2570-9. doi: 10.1152/jn.1994.72.6.2570.

Abstract

1. The electrophysiological properties of the rabbit vagus nerve (membrane potential, compound action potentials, and afterpotentials) and potassium accumulation were measured simultaneously during low-frequency stimulation (LFS) (0.5 and 1 Hz) by using a modified sucrose-gap apparatus and potassium-sensitive microelectrodes (KSM). 2. During LFS at 0.5 and 1 Hz, the concentration of K+ in the extracellular space ([K+]c) increased in approximately 30 s to a maximal level that was 0.6 and 1.5 mM, respectively, above the resting concentration. Concomitantly the preparation developed an ouabain-sensitive hyperpolarization. 3. The compound action potential (CAP) was followed by a fast hyperpolarizing afterpotential (fHAP), a depolarizing afterpotential (DAP), and a slow hyperpolarizing afterpotential (sHAP). During LFS the characteristics of all these afterpotentials were profoundly modified. In parallel to the increase in [K+]e, the fHAP was decreased and the amplitude of the DAP was dramatically enhanced. Furthermore, the sHAP which had a duration of < 1 s when it followed a single CAP, turned into a ouabain-sensitive hyperpolarization (indicating that it was generated by the electrogenic Na(+)-K+ pump) that lasted several minutes. 4. The application of external Ba2+ produced a hyperpolarizing sag on the sHAP following a single isolated CAP. During LFS, Ba2+ enhanced the build-up of the DAP, raised the maximal level of [K+]e, and increased the activity-induced ouabain-sensitive hyperpolarization. 5. The increase by Ba2+ of the activity-induced hyperpolarization shifted the spikes from both myelinated and nonmyelinated fibers toward a more negative potential but did not increase their amplitude, indicating that this Ba(2+)-induced hyperpolarization originated from an extra-axonal source, presumably the Schwann cells. 6. It is proposed that the electrogenic activity of the Na(+)-K+ pump was enhanced in Schwann cells situated near active axons. This hyperpolarization was, however, not recorded in normal conditions because it was fully short-circuited by a K+ influx through Ba(2+)-sensitive channels. 7. Our results lead to the hypothesis that the Na(+)-K+ pump of the nonmyelinating Schwann cells is important in the mechanisms maintaining the homeostasis of K+ in the axonal microenvironment. They show that the Na(+)-K+ pump contributes to the K+ buffering not only by actively pumping K+ but also by generating a hyperpolarization that drives a passive K+ influx through Ba(2+)-sensitive K+ channels.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Axons / drug effects
  • Axons / physiology*
  • Barium / pharmacology
  • Electric Stimulation
  • In Vitro Techniques
  • Ion-Selective Electrodes
  • Membrane Potentials / drug effects
  • Membrane Potentials / physiology
  • Myelin Sheath / physiology
  • Ouabain / pharmacology
  • Patch-Clamp Techniques
  • Potassium / metabolism*
  • Rabbits
  • Schwann Cells / drug effects
  • Schwann Cells / metabolism*
  • Schwann Cells / physiology
  • Sodium-Potassium-Exchanging ATPase / metabolism
  • Vagus Nerve / drug effects
  • Vagus Nerve / physiology

Substances

  • Barium
  • Ouabain
  • Sodium-Potassium-Exchanging ATPase
  • Potassium