Friction, not texture, dictates grip forces used during object manipulation

J Neurophysiol. 1996 May;75(5):1963-9. doi: 10.1152/jn.1996.75.5.1963.

Abstract

1. Three men and seven women, 25-40 yr of age, were asked to use the thumb and index fingers to grasp, lift, and hold the armature of a linear motor generating a 2.0-N opposing force (simulating an object weighing approximately 200 g) for 2 s. The surface in contact with the fingers was composed of smooth or polyamide plastic etched with 1.0-mm high Braille beads separated at 2.0- or 3.0-mm intervals measured from apex to apex. The surfaces were left either untreated or coated with talc, water, or sucrose films designed to change the coefficient of friction with the skin. Talc reduced the coefficient of friction, whereas water and sucrose both increased the friction against the skin. In all, 12 surface conditions were used to evaluate the effects of texture and friction on the grip force during lifting and holding. 2. For all subjects the inverse coefficient of friction was associated with proportionately scaled increases in grip force, regardless of surface texture. The peak lifting force as well as the static force used to hold the object stationary were significantly correlated with the inverse of the coefficient of friction. When coatings were applied to dissimilar surface textures to produce similar coefficients of friction, the grip force profiles were nearly identical. When strong adhesives increased the friction of the smooth surface compared with textured surfaces, grip forces decreased as friction increased. That is, although the untreated smooth surface had less friction than either of the two textured surfaces, the addition of sucrose increased the smooth surface friction to a higher level than either of the similarly treated textured surfaces. As a result, the effect of surface friction could be dissociated from the effect of either surface texture or coating. Friction appears to be a more important factor in determining the grip force than either texture or surface films at least for the range of textures and coatings examined in this study.

Publication types

  • Clinical Trial
  • Controlled Clinical Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adhesiveness
  • Adult
  • Female
  • Fingers / physiology
  • Friction*
  • Hand / physiology
  • Hand Strength / physiology*
  • Humans
  • Lubrication
  • Male
  • Surface Properties*
  • Sweat / physiology