Dorsal determinants in the Xenopus egg are firmly associated with the vegetal cortex and behave like activators of the Wnt pathway

Dev Biol. 1997 Nov 1;191(1):69-79. doi: 10.1006/dbio.1997.8710.

Abstract

The Xenopus egg contains maternal dorsal determinants that are specifically located at the vegetal cortex. To study physical and functional properties of the dorsal determinants, we took advantage of the animal-vegetal reversed embryo. The animal-vegetal reversed embryo is produced by inversion of the fertilized egg, which results in formation of ectoderm and endoderm from the unpigmented and the pigmented halves, respectively [Neff et al. (1983). Dev. Biol. 97, 103-112; Black and Gerhart (1985). Dev. Biol. 108, 310-324]. We demonstrated by cytoplasmic transplantation that the dorsal activity was specifically localized to the unpigmented cortical cytoplasm of the inverted egg, which is segregated into the future ectodermal lineage. This result suggests that the dorsal determinants are associated with the unpigmented cortex and are not dislodged by the inversion. In addition, we found that two vegetally localized transcripts, Xcat2 and Vg1 mRNAs, were present in the reversed animal pole of the inverted egg, suggesting their association with the unpigmented cortex. In order to compare the dorsal determinant activity with known dorsalizing molecules, we examined the expression pattern of Xnr3 and Siamois in the reversed embryo because these two genes are activated by the Wnt-pathway activators (Xwnt-8, beta-catenin, etc.) but not by other dorsalizing molecules (noggin, BVg1, etc.). Animal cap of the reversed embryo, which received the unpigmented cortex of the egg, expressed Xnr3 and Siamois. However, Mix.1, a marker expressed in endoderm and mesoderm in the normal embryo in response to mesodermal inducers, was not detected in the animal cap of the reversed embryo. In addition, we found that beta-catenin protein accumulated in nuclei of unpigmented animal pole cells of the reversed embryo. These results suggest that the maternal dorsal determinants behave more similarly to the Wnt-pathway activators than noggin or BVg1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Body Patterning
  • Cell Polarity
  • Cytoskeletal Proteins / biosynthesis
  • Ectoderm / cytology
  • Ectoderm / physiology
  • Embryo, Nonmammalian / physiology*
  • Female
  • Fertilization
  • Gene Expression Regulation, Developmental*
  • Glycoproteins / biosynthesis
  • Oocytes / cytology
  • Oocytes / physiology*
  • Polymerase Chain Reaction
  • Proto-Oncogene Proteins / biosynthesis*
  • RNA-Binding Proteins / biosynthesis
  • Receptors, Transforming Growth Factor beta / biosynthesis
  • Repressor Proteins
  • Trans-Activators*
  • Transcription, Genetic
  • Transforming Growth Factor beta / biosynthesis
  • Wnt Proteins
  • Xenopus Proteins*
  • Xenopus laevis / embryology*
  • Zebrafish Proteins*
  • Zinc Fingers
  • beta Catenin

Substances

  • CTNNB1 protein, Xenopus
  • Cytoskeletal Proteins
  • GDF1 protein, Xenopus
  • Glycoproteins
  • Proto-Oncogene Proteins
  • RNA-Binding Proteins
  • Receptors, Transforming Growth Factor beta
  • Repressor Proteins
  • Trans-Activators
  • Transforming Growth Factor beta
  • Wnt Proteins
  • Xenopus Proteins
  • Zebrafish Proteins
  • beta Catenin
  • nanos1 protein, Xenopus
  • nodal3.1 protein, Xenopus
  • wnt8a protein, Xenopus