Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys

J Neurophysiol. 1998 Jul;80(1):28-47. doi: 10.1152/jn.1998.80.1.28.

Abstract

To examine how the periarcuate area is involved in the control of smooth pursuit eye movements, we recorded 177 single neurons while monkeys pursued a moving target in the dark. The majority (52%, 92/177) of task-related neurons responded to pursuit but had little or no response to saccades. Histological reconstructions showed that these neurons were located mainly in the posterior bank of the arcuate sulcus near the sulcal spur. Twenty-seven percent (48/177) changed their activity at the onset of saccades. Of these, 36 (75%) showed presaccadic burst activity with strong preference for contraversive saccades. Eighteen (10%, 18/177) were classified as eye-position-related neurons, and 11% (19/177) were related to other aspects of the stimuli or response. Among the 92 neurons that responded to pursuit, 85 (92%) were strongly directional with uniformly distributed preferred directions. Further analyses were performed in these directionally sensitive pursuit-related neurons. For 59 neurons that showed distinct changes in activity around the initiation of pursuit, the median latency from target motion was 96 ms and that preceding pursuit was -12 ms, indicating that these neuron can influence the initiation of pursuit. We tested some neurons by briefly extinguishing the tracking target (n = 39) or controlling its movement with the eye position signal (n = 24). The distribution of the change in pursuit-related activity was similar to previous data for the dorsomedial part of the medial superior temporal neurons (, indicating that pursuit-related neurons in the periarcuate area also carry extraretinal signals. For 22 neurons, we examined the responses when the animals reversed pursuit direction to distinguish the effects of eye acceleration in the preferred direction from oppositely directed eye velocity. Almost all neurons discharged before eye velocity reached zero, however, only nine neurons discharged before the eyes were accelerated in the preferred direction. The delay in neuronal responses relative to the onset of eye acceleration in these trials might be caused by suppression from oppositely directed pursuit velocity. The results suggest that the periarcuate neurons do not participate in the earliest stage of eye acceleration during the change in pursuit direction, although most of them may participate in the early stages of pursuit initiation in the ordinary step-ramp pursuit trials. Some neurons changed their activity when the animals fixated a stationary target, and this activity could be distinguished easily from the strong pursuit-related responses. Our results suggest that the periarcuate pursuit area carries extraretinal signals and affects the premotor circuitry for smooth pursuit.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Mapping*
  • Macaca
  • Male
  • Motion Perception / physiology*
  • Neurons / physiology*
  • Photic Stimulation
  • Reaction Time
  • Saccades / physiology*
  • Visual Cortex / physiology*
  • Visual Pathways / physiology*