Skip to main content
Log in

Salt and osmosensing: role of cytoplasmic hydrogel

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Osmotic perturbations, occurring frequently under physiological and pathological conditions, alter cell size/volume and function. To protect cellular homeostasis, cell osmo- and volume-sensing mechanisms activate volume compensatory processes. The plasma membrane plays a prominent role in cell volume regulation by mediating the selective transport of extra- and intracellular osmolytes. The function of the membrane-enclosed cytoplasm in osmosensing and cell volume homeostasis is much less appreciated. We present current concepts and discuss evidence of cell volume sensors with emphasis on the hydrogel nature of the mammalian cytoplasm and its intrinsic osmosensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akimova OA, Poirier M, Kotelevtsev SV, Hamet P, Orlov SN (2008) The death of ouabain-treated renal epithelial cells: evidence against anoikis occurrence. Apoptosis 13:670–680

    Article  CAS  PubMed  Google Scholar 

  2. Alenghat FJ, Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 2002:E6

    Google Scholar 

  3. Bagriantsev SN, Gracheva EO, Gallagher PG (2014) Piezo proteins: regulators of mechanosensation and other cellular processes. J Biol Chem 289:31673–31681

    Article  CAS  PubMed  Google Scholar 

  4. Boudreault F, Grygorczyk R (2004) Evaluation of rapid volume changes of substrate-adherent cells by conventional microscopy 3D imaging. J Microsc 215:302–312

    Article  CAS  PubMed  Google Scholar 

  5. Brandts JF, Taverna RD, Sadasivan E, Lysko KA (1978) Calorimetric studies of the structural transitions of the human erythrocyte membrane. Studies of the B and C transitions. Biochim Biophys Acta 512:566–578

    Article  CAS  PubMed  Google Scholar 

  6. Brown A, Lasek RJ (1993) Neurofilaments move apart freely when released from the circumferential constraint of the axonal plasma membrane. Cell Motil Cytoskeleton 26:313–324

    Article  CAS  PubMed  Google Scholar 

  7. Cameron IL, Hardman WE, Fullerton GD, Miseta A, Koszegi T, Ludany A, Kellermayer M (1996) Maintenance of ions, proteins and water in lens fiber cells before and after treatment with non-ionic detergents. Cell Biol Int 20:127–137

    Article  CAS  PubMed  Google Scholar 

  8. Cameron IL, Short NJ, Fullerton GD (2008) Characterization of water of hydration fractions in rabbit skeletal muscle with age and time of post-mortem by centrifugal dehydration force and rehydration methods. Cell Biol Int 32:1337–1343

    Article  CAS  PubMed  Google Scholar 

  9. Chaplin M (2006) Do we underestimate the importance of water in cell biology? Nat Rev Mol Cell Biol 7:861–866

    Article  CAS  PubMed  Google Scholar 

  10. Clegg JS (1984) Intracellular water and the cytomatrix: some methods of study and current views. J Cell Biol 99:167s–171s

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Colclasure GC, Parker JC (1991) Cytosolic protein concentration is the primary volume signal in dog red cells. J Gen Physiol 98:881–892

    Article  CAS  PubMed  Google Scholar 

  12. Collins KD (1995) Sticky ions in biological systems. Proc Natl Acad Sci U S A 92:5553–5557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Danziger J, Zeidel ML (2014) Osmotic homeostasis. Clin J Am Soc Nephrol. doi:10.2215/CJN.10741013

    PubMed  Google Scholar 

  14. Eduardsen K, Larsen SL, Novak I, Lambert IH, Hoffmann EK, Pedersen SF (2011) Cell volume regulation and signaling in 3T3-L1 pre-adipocytes and adipocytes: on the possible roles of caveolae, insulin receptors, FAK and ERK1/2. Cell Physiol Biochem 28:1231–1246

    Article  CAS  PubMed  Google Scholar 

  15. Elliott GF, Goodfellow JM, Woolgar AE (1980) Swelling studies of bovine corneal stroma without bounding membranes. J Physiol 298:453–470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Elliott GF, Hodson SA (1998) Cornea, and the swelling of polyelectrolyte gels of biological interest. Rep Prog Phys 61:1325–1365

    Article  CAS  Google Scholar 

  17. Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    Article  CAS  PubMed  Google Scholar 

  18. Fels J, Orlov SN, Grygorczyk R (2009) The hydrogel nature of mammalian cytoplasm contributes to osmosensing and extracellular pH sensing. Biophys J 96:4276–4285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Fullerton GD, Kanal KM, Cameron IL (2006) Osmotically unresponsive water fraction on proteins: non-ideal osmotic pressure of bovine serum albumin as a function of pH and salt concentration. Cell Biol Int 30:86–92

    Article  CAS  PubMed  Google Scholar 

  20. Fulton AB (1982) How crowded is the cytoplasm? Cell 30:345–347

    Article  CAS  PubMed  Google Scholar 

  21. Groulx N, Boudreault F, Orlov SN, Grygorczyk R (2006) Membrane reserves and hypotonic cell swelling. J Membr Biol 214:43–56

    Article  CAS  PubMed  Google Scholar 

  22. Gulak PV, Orlov SN, Pokudin NI, Postnov YV, Litvinov IS, Orlov NJ, Shnyrov VL (1984) Microcalorimetry and electrophoresis of the erythrocyte membrane of spontaneously hypertensive rats. J Hypertens 2:81–84

    Article  CAS  PubMed  Google Scholar 

  23. Hazlewood CF, Kellermayer M (1988) Ion and water retention by permeabilized cells. Scanning Microsc 2:267–273

    CAS  PubMed  Google Scholar 

  24. Hoffmann EK (2000) Intracellular signalling involved in volume regulatory decrease. Cell Physiol Biochem 10:273–288

    Article  CAS  PubMed  Google Scholar 

  25. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89:193–277

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann EK, Simonsen LO (1989) Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69:315–382

    CAS  PubMed  Google Scholar 

  27. Hortelano S, Garcia-Martin ML, Cerdan S, Castrillo A, Alvarez AM, Bosca L (2001) Intracellular water motion decreases in apoptotic macrophages after caspase activation. Cell Death Differ 8:1022–1028

    Article  CAS  PubMed  Google Scholar 

  28. Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    Article  CAS  PubMed  Google Scholar 

  29. Katchalsky A (1964) Polyelectrolytes and their biological interactions. Biophys J 4:Suppl-41

  30. Knull H, Minton AP (1996) Structure within eukaryotic cytoplasm and its relationship to glycolytic metabolism. Cell Biochem Funct 14:237–248

    Article  CAS  PubMed  Google Scholar 

  31. Koivusalo M, Kapus A, Grinstein S (2009) Sensors, transducers, and effectors that regulate cell size and shape. J Biol Chem 284:6595–6599

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Koltsova SV, Platonova A, Maksimov GV, Mongin AA, Grygorczyk R, Orlov SN (2011) Activation of P2Y receptors causes strong and persistent shrinkage of C11-MDCK renal epithelial cells. Am J Physiol Cell Physiol 301:C403–C412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73:653–658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Korolev N, Lyubartsev AP, Rupprecht A, Nordenskiold L (1999) Competitive binding of Mg2+, Ca2+, Na+, and K+ ions to DNA in oriented DNA fibers: experimental and Monte Carlo simulation results. Biophys J 77:2736–2749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kozera L, White E, Calaghan S (2009) Caveolae act as membrane reserves which limit mechanosensitive I(Cl, swell) channel activation during swelling in the rat ventricular myocyte. PLoS One 4:e8312

    Article  PubMed Central  PubMed  Google Scholar 

  36. Kunz L, Stark G (1997) Photodynamic membrane damage at the level of single ion channels. Biochim Biophys Acta Biomembr 1327:1–4

    Article  CAS  Google Scholar 

  37. Lang F (2007) Mechanisms and significance of cell volume regulation. J Am Coll Nutr 26:613S–623S

    Article  CAS  PubMed  Google Scholar 

  38. Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    CAS  PubMed  Google Scholar 

  39. Lehtonen JY, Kinnunen PK (1995) Phospholipase A2 as a mechanosensor. Biophys J 68:1888–1894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Leterrier JF (2001) Water and the cytoskeleton. Cell Mol Biol (Noisy -le-grand) 47:901–923

    CAS  Google Scholar 

  41. Ling GN (2006) A convergence of experimental and theoretical breakthrougs affirms the PM theory of dynamically structures cell water on the theory’s 40th birthday. In: Pollack GH, Cameron IL, Wheatley DN (eds) Water and the cell. Springer, Dordrecht, pp 1–52

    Chapter  Google Scholar 

  42. Luby-Phelps K (2000) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221

    Article  CAS  PubMed  Google Scholar 

  43. Martinac B (2011) Bacterial mechanosensitive channels as a paradigm for mechanosensory transduction. Cell Physiol Biochem 28:1051–1060

    Article  CAS  PubMed  Google Scholar 

  44. Minton AP (1980) Excluded volume as a determinant of protein structure and stability. Biophys J 32:77–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  46. Minton AP, Colclasure GC, Parker JC (1992) Model for the role of macromolecular crowding in regulation of cellular volume. Proc Natl Acad Sci U S A 89:10504–10506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Mongin AA, Orlov SN (2001) Mechanism of cell volume regulation and possible nature of the cell volume sensor. Pathophysiology 8:77–88

    Article  CAS  PubMed  Google Scholar 

  48. Munakata S, Hatori K (2013) The excluded volume effect induced by poly(ethylene glycol) modulates the motility of actin filaments interacting with myosin. FEBS J 280:5875–5883

    Article  CAS  PubMed  Google Scholar 

  49. O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch - Eur J Physiol 451:193–203

    Article  Google Scholar 

  50. Okada Y (1997) Volume expansion-sensing outward-rectifier Cl channel: fresh start to the molecular identity and volume sensor. Am J Physiol 273:C755–C789

    CAS  PubMed  Google Scholar 

  51. Orlov SN, Kolosova IA, Cragoe EJ, Gurlo TG, Mongin AA, Aksentsev SL, Konev SV (1993) Kinetics and peculiarities of thermal inactivation of volume-induced Na+/H+ exchange, Na+, K+,2Cl− cotransport and K+, Cl− cotransport in rat erythrocytes. Biochim Biophys Acta 1151:186–192

    Article  CAS  PubMed  Google Scholar 

  52. Orlov SN, Kuznetsov SR, Kolosova IA, Aksentsev SL, Konev SV (1997) Volume-dependent regulation of ion carriers in human and rat erythrocytes: role of cytoskeleton and protein phosphorylation. Ross Fiziol Zh Im I M Sechenova 83:119–147

    CAS  PubMed  Google Scholar 

  53. Parker JC (1993) Urea alters set point volume for K-Cl cotransport, Na-H exchange, and Ca-Na exchange in dog red blood cells. Am J Physiol 265:C447–C452

    CAS  PubMed  Google Scholar 

  54. Parshina EY, Yusipovich AI, Platonova AA, Grygorczyk R, Maksimov GV, Orlov SN (2013) Thermal inactivation of volume-sensitive K(+), Cl(−) cotransport and plasma membrane relief changes in human erythrocytes. Pflugers Arch 465:977–983

    Article  CAS  PubMed  Google Scholar 

  55. Pedersen SF, Hoffmann EK, Mills JW (2001) The cytoskeleton and cell volume regulation. Comp Biochem Physiol A Mol Integr Physiol 130:385–399

    Article  CAS  PubMed  Google Scholar 

  56. Pedersen SF, Kapus A, Hoffmann EK (2011) Osmosensory mechanisms in cellular and systemic volume regulation. J Am Soc Nephrol 22:1587–1597

    Article  CAS  PubMed  Google Scholar 

  57. Pedersen SF, Nilius B (2007) Transient receptor potential channels in mechanosensing and cell volume regulation. Methods Enzymol 428:183–207

    Article  CAS  PubMed  Google Scholar 

  58. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  PubMed  Google Scholar 

  59. Platonova A, Boudreault F, Kapilevich LV, Maksimov GV, Ponomarchuk O, Grygorczyk R, Orlov SN (2014) Temperature-induced inactivation of cytoplasmic biogel osmosensing properties is associated with suppression of regulatory volume decrease in A549 cells. J Membr Biol 247:571–579

    Article  CAS  PubMed  Google Scholar 

  60. Platonova AA, Orlov SN, Grygorczyk R (2013) Volume changes triggered by aniosmotic media in intact and permeabilized A549 cells: role of cytoskeleton network. Bull Sib Med 12(4):60, Ref Type: Abstract

    Google Scholar 

  61. Ricka J, Tanaka T (1984) Swelling of ionic gels—quantitative performance of the donnan theory. Macromolecules 17:2916–2921

    Article  CAS  Google Scholar 

  62. Sachs F (2010) Stretch-activated ion channels: what are they? Physiology (Bethesda) 25:50–56

    Article  CAS  Google Scholar 

  63. Sachs JR (1998) How red blood cells know how big they are? In: Okada Y (ed) Cell volume regulation: the molecular mechanism and volume sensing machinery. Elsevier Science, Tokyo, pp 3–13

    Google Scholar 

  64. Shepherd VA (2006) Coherent domains in the streaming cytoplasm of a giant algal cell. In: Pollack GH, Cameron IL, Wheatley DN (eds) Water and the cell. Springer, Dordrecht, pp 71–92

    Chapter  Google Scholar 

  65. Shepherd VA (2006) The cytomatrix as a cooperative system of macromolecular and water networks. Curr Top Dev Biol 75:171–223

    Article  CAS  PubMed  Google Scholar 

  66. Shnyrov VL, Orlov SN, Zhadan GG, Pokudin NI (1990) Thermal inactivation of membrane proteins, volume-dependent Na+, K(+)-cotransport, and protein kinase C activator-induced changes of the shape of human and rat erythrocytes. Biomed Biochim Acta 49:445–453

    CAS  PubMed  Google Scholar 

  67. Sinha B, Koster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-Browne G, Vedie B, Johannes L, Morone N et al (2011) Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:402–413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426–C432

    Article  CAS  PubMed  Google Scholar 

  69. Sowa G (2012) Caveolae, caveolins, cavins, and endothelial cell function: new insights. Front Physiol 2:120

    Article  PubMed Central  PubMed  Google Scholar 

  70. Spagnoli C, Beyder A, Besch S, Sachs F (2008) Atomic force microscopy analysis of cell volume regulation. Phys Rev E Stat Nonlinear Soft Matter Phys 78:031916

    Article  Google Scholar 

  71. Strange K (1989) Ouabain-induced cell swelling in rabbit cortical collecting tubule: NaCl transport by principal cells. J Membr Biol 107:249–261

    Article  CAS  PubMed  Google Scholar 

  72. Strange K (2004) Cellular volume homeostasis. Adv Physiol Educ 28:155–159

    Article  PubMed  Google Scholar 

  73. Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    Article  CAS  PubMed  Google Scholar 

  74. Summers JC, Trais L, Lajvardi R, Hergan D, Buechler R, Chang H, Pena-Rasgado C, Rasgado-Flores H (1997) Role of concentration and size of intracellular macromolecules in cell volume regulation. Am J Physiol 273:C360–C370

    CAS  PubMed  Google Scholar 

  75. Thirone AC, Speight P, Zulys M, Rotstein OD, Szaszi K, Pedersen SF, Kapus A (2009) Hyperosmotic stress induces Rho/Rho kinase/LIM kinase-mediated cofilin phosphorylation in tubular cells: key role in the osmotically triggered F-actin response. Am J Physiol Cell Physiol 296:C463–C475

    Article  CAS  PubMed  Google Scholar 

  76. Trouet D, Hermans D, Droogmans G, Nilius B, Eggermont J (2001) Inhibition of volume-regulated anion channels by dominant-negative caveolin-1. Biochem Biophys Res Commun 284:461–465

    Article  CAS  PubMed  Google Scholar 

  77. Volkers L, Mechioukhi Y, Coste B (2014) Piezo channels: from structure to function. Pflugers Arch. doi:10.1007/s00424-014-1578-z

    PubMed  Google Scholar 

  78. Wheatley DN (2003) Diffusion, perfusion and the exclusion principles in the structural and functional organization of the living cell: reappraisal of the properties of the ‘ground substance’. J Exp Biol 206:1955–1961

    Article  CAS  PubMed  Google Scholar 

  79. Yusipovich AI, Zagubizhenko MV, Levin GG, Platonova A, Parshina EY, Grygorzcyk R, Maksimov GV, Rubin AB, Orlov SN (2011) Laser interference microscopy of amphibian erythrocytes: impact of cell volume and refractive index. J Microsc 244:223–229

    Article  CAS  PubMed  Google Scholar 

  80. Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Zimmerman SB, Harrison B (1987) Macromolecular crowding increases binding of DNA polymerase to DNA: an adaptive effect. Proc Natl Acad Sci U S A 84:1871–1875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryszard Grygorczyk or Sergei N. Orlov.

Additional information

This article is published as part of a Special Issue on Salt and Osmosensing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grygorczyk, R., Boudreault, F., Platonova, A. et al. Salt and osmosensing: role of cytoplasmic hydrogel. Pflugers Arch - Eur J Physiol 467, 475–487 (2015). https://doi.org/10.1007/s00424-014-1680-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1680-2

Keywords

Navigation