Polytene Chromosome Structure and Somatic Genome Instability

  1. Allan C. Spradling
  1. Department of Embryology, Howard Hughes Medical Institute, Carnegie Institution for Science, Baltimore, Maryland 21218
  1. Correspondence: spradling{at}carnegiescience.edu

Abstract

Polytene chromosomes have for 80 years provided the highest resolution view of interphase genome structure in an animal cell nucleus. These chromosomes represent the normal genomic state of nearly all Drosophila larval and many adult cells, and a better understanding of their striking banded structure has been sought for decades. A more recently appreciated characteristic of Drosophila polytene cells is somatic genome instability caused by unfinished replication (UR). Repair of stalled forks generates enough deletions in polytene salivary gland cells to alter 10%–90% of the DNA strands within more than 100 UR regions comprising 20% of the euchromatic genome. We accurately map UR regions and show that most approximate large polytene bands, indicating that replication forks frequently stall near band boundaries in late S phase. Chromosome conformation capture has recently identified dense topologically associated domains (TADs) in many genomes and most UR bands are similar or slightly smaller than a cognate Drosophila TAD. We argue that bands serve the evolutionarily ancient function of coordinating genome replication with local gene activity. We also discuss the relatively recent evolution of polyteny and somatic instability in Diptera and propose that these processes helped propel the amazing success of two-winged flies in becoming the most ecologically diverse insect group, with 200 times the number of species as mammals.

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial License, which permits reuse and redistribution, except for commercial purposes, provided that the original author and source are credited.

| Table of Contents