A Gene Expression Screen in Zebrafish Embryogenesis

  1. Tetsuhiro Kudoh1,
  2. Michael Tsang1,
  3. Neil A. Hukriede,
  4. Xiongfong Chen2,
  5. Michael Dedekian,
  6. Christopher J. Clarke,
  7. Anne Kiang,
  8. Stephanie Schultz,
  9. Jonathan A. Epstein2,
  10. Reiko Toyama, and
  11. Igor B. Dawid3
  1. Laboratory of Molecular Genetics and 2Unit of Biological Computation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA

Abstract

A screen for developmentally regulated genes was conducted in the zebrafish, a system offering substantial advantages for the study of the molecular genetics of vertebrate embryogenesis. Clones from a normalized cDNA library from early somitogenesis stages were picked randomly and tested by high-throughput in situ hybridization for restricted expression in at least one of four stages of development. Among 2765 clones that were screened, a total of 347 genes with patterns judged to be restricted were selected. These clones were subjected to partial sequence analysis, allowing recognition of functional motifs in 163 among them. In addition, a portion of the clones were mapped with the aid of the LN54 radiation hybrid panel. The usefulness of the in situ hybridization screening approach is illustrated by describing several new markers for the characteristic structure in the fish embryo named the yolk syncytial layer, and for different regions of the developing brain.

Footnotes

  • 1 These authors contributed equally to this work.

  • 3 Corresponding author.

  • E-MAIL idawid{at}nih.gov; FAX (301) 496-0243.

  • Article published on-line before print: Genome Res.,10.1101/gr.209601.

  • Article and publication are at http://www.genome.org/cgi/doi/10.1101/gr.209601.

    • Received August 10, 2001.
    • Accepted September 12, 2001.
| Table of Contents

Preprint Server