Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation

  1. Patrick Cramer2
  1. Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
    1. 1 These authors contributed equally to this work.

    Abstract

    To monitor eukaryotic mRNA metabolism, we developed comparative dynamic transcriptome analysis (cDTA). cDTA provides absolute rates of mRNA synthesis and decay in Saccharomyces cerevisiae (Sc) cells with the use of Schizosaccharomyces pombe (Sp) as an internal standard. cDTA uses nonperturbing metabolic labeling that supersedes conventional methods for mRNA turnover analysis. cDTA reveals that Sc and Sp transcripts that encode orthologous proteins have similar synthesis rates, whereas decay rates are fivefold lower in Sp, resulting in similar mRNA concentrations despite the larger Sp cell volume. cDTA of Sc mutants reveals that a eukaryote can buffer mRNA levels. Impairing transcription with a point mutation in RNA polymerase (Pol) II causes decreased mRNA synthesis rates as expected, but also decreased decay rates. Impairing mRNA degradation by deleting deadenylase subunits of the Ccr4–Not complex causes decreased decay rates as expected, but also decreased synthesis rates. Extended kinetic modeling reveals mutual feedback between mRNA synthesis and degradation that may be achieved by a factor that inhibits synthesis and enhances degradation.

    Footnotes

    • 2 Corresponding authors

      E-mail tresch{at}LMB.uni-muenchen.de

      E-mail cramer{at}LMB.uni-muenchen.de

    • [Supplemental material is available for this article.]

    • Article published online before print. Article, supplemental material, and publication date are at http://www.genome.org/cgi/doi/10.1101/gr.130161.111.

    • Received August 2, 2011.
    • Accepted March 19, 2012.

    This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/.

    | Table of Contents

    Preprint Server