The bacterial cell cycle regulator GcrA is a σ70 cofactor that drives gene expression from a subset of methylated promoters

  1. Michael T. Laub1,2
  1. 1Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
  2. 2Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
  3. 3Graduate Program in Microbiology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
  1. Corresponding author: laub{at}mit.edu

Abstract

Cell cycle progression in most organisms requires tightly regulated programs of gene expression. The transcription factors involved typically stimulate gene expression by binding specific DNA sequences in promoters and recruiting RNA polymerase. Here, we found that the essential cell cycle regulator GcrA in Caulobacter crescentus activates the transcription of target genes in a fundamentally different manner. GcrA forms a stable complex with RNA polymerase and localizes to almost all active σ70-dependent promoters in vivo but activates transcription primarily at promoters harboring certain DNA methylation sites. Whereas most transcription factors that contact σ70 interact with domain 4, GcrA interfaces with domain 2, the region that binds the −10 element during strand separation. Using kinetic analyses and a reconstituted in vitro transcription assay, we demonstrated that GcrA can stabilize RNA polymerase binding and directly stimulate open complex formation to activate transcription. Guided by these studies, we identified a regulon of ∼200 genes, providing new insight into the essential functions of GcrA. Collectively, our work reveals a new mechanism for transcriptional regulation, and we discuss the potential benefits of activating transcription by promoting RNA polymerase isomerization rather than recruitment exclusively.

Keywords

Footnotes

  • Received August 19, 2015.
  • Accepted October 8, 2015.

This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

| Table of Contents

Life Science Alliance