Repression by Suppressor of Hairless and activation by Notch are required to define a single row of single-minded expressing cells in the Drosophila embryo

  1. Véronique Morel and
  2. François Schweisguth1
  1. Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) Action Thématique Incitative sur Programme et Equipe (ATIPE) Unité Mixte de Recherche (UMR) 8544, 75230 Paris Cedex 05, France

Abstract

Notch signal transduction appears to involve the ligand-induced intracellular processing of Notch, and the formation of a processed Notch-Suppressor of Hairless complex that binds DNA and activates the transcription of Notch target genes. This suggests that loss of eitherNotch or Su(H) activities should lead to similar cell fate changes. However, previous data indicate that, in theDrosophila blastoderm embryo, mesectoderm specification requires Notch but not Su(H) activity. The determination of the mesectodermal fate is specified by Single-minded (Sim), a transcription factor expressed in a single row of cells abutting the mesoderm. The molecular mechanisms by which the dorsoventral gradient of nuclear Dorsal establishes the single-cell wide territory of sim expression are not fully understood. We have found that Notch activity is required for simexpression in cellularizing embryos. In contrast, at this stage,Su(H) has a dual function. Su(H) activity was required to up-regulate sim expression in the mesectoderm, and to prevent the ectopic expression of sim dorsally in the neuroectoderm. We have shown that repression of simtranscription by Su(H) is direct and independent of Notchactivity. Conversely, activation of sim transcription by Notch requires the Su(H)-binding sites. Thus, Notch signalling appears to relieve the repression exerted by Su(H) and to up-regulate simtranscription in the mesectoderm. We propose a model in which repression by Su(H) and derepression by Notch are essential to allow for the definition of a single row of mesectodermal cells in the blastoderm embryo.

Keywords

Footnotes

  • 1 Corresponding author.

  • E-MAIL schweisg{at}wotan.ens.fr; FAX 33 1 44 32 38 87.

    • Received July 19, 1999.
    • Accepted December 13, 1999.
| Table of Contents

Life Science Alliance