RNA-activated DNA cleavage by the Type III-B CRISPR–Cas effector complex

  1. Scott Bailey
  1. Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
  1. Corresponding author: scott.bailey{at}jhu.edu

Abstract

The CRISPR (clustered regularly interspaced short palindromic repeat) system is an RNA-guided immune system that protects prokaryotes from invading genetic elements. This system represents an inheritable and adaptable immune system that is mediated by multisubunit effector complexes. In the Type III-B system, the Cmr effector complex has been found to cleave ssRNA in vitro. However, in vivo, it has been implicated in transcription-dependent DNA targeting. We show here that the Cmr complex from Thermotoga maritima can cleave an ssRNA target that is complementary to the CRISPR RNA. We also show that binding of a complementary ssRNA target activates an ssDNA-specific nuclease activity in the histidine–aspartate (HD) domain of the Cmr2 subunit of the complex. These data suggest a mechanism for transcription-coupled DNA targeting by the Cmr complex and provide a unifying mechanism for all Type III systems.

Keywords

Footnotes

  • Received October 20, 2015.
  • Accepted January 11, 2016.

This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Related Article

| Table of Contents

Life Science Alliance