Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry

View ORCID ProfileConstantin Ahlmann-Eltze, View ORCID ProfileSimon Anders
doi: https://doi.org/10.1101/661496
Constantin Ahlmann-Eltze
1Center for Molecular Biology, University of Heidelberg, Germany
2Genome Biology Unit, European Laboratory for Molecular Biology (EMBL), Heidelberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Constantin Ahlmann-Eltze
Simon Anders
1Center for Molecular Biology, University of Heidelberg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Simon Anders
  • For correspondence: sanders@fs.tum.de
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading
  • https://github.com/const-ae/proDA

Back to top
PreviousNext
Posted May 01, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
Constantin Ahlmann-Eltze, Simon Anders
bioRxiv 661496; doi: https://doi.org/10.1101/661496
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
Constantin Ahlmann-Eltze, Simon Anders
bioRxiv 661496; doi: https://doi.org/10.1101/661496

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (2653)
  • Biochemistry (5286)
  • Bioengineering (3696)
  • Bioinformatics (15824)
  • Biophysics (7279)
  • Cancer Biology (5633)
  • Cell Biology (8118)
  • Clinical Trials (138)
  • Developmental Biology (4782)
  • Ecology (7548)
  • Epidemiology (2059)
  • Evolutionary Biology (10604)
  • Genetics (7746)
  • Genomics (10163)
  • Immunology (5223)
  • Microbiology (13962)
  • Molecular Biology (5399)
  • Neuroscience (30878)
  • Paleontology (217)
  • Pathology (883)
  • Pharmacology and Toxicology (1527)
  • Physiology (2262)
  • Plant Biology (5035)
  • Scientific Communication and Education (1045)
  • Synthetic Biology (1399)
  • Systems Biology (4156)
  • Zoology (814)