Abstract
A central challenge in human genomics is to understand the cellular, evolutionary, and clinical significance of genetic variants. Here we introduce a unified population-genetic and machine-learning model, called Linear Allele-Specific Selection InferencE (LASSIE), for estimating the fitness effects of all potential single-nucleotide variants, based on polymorphism data and predictive genomic features. We applied LASSIE to 51 high-coverage genome sequences annotated with 33 genomic features, and constructed a map of allele-specific selection coefficients across all protein-coding sequences in the human genome. We show that this map is informative about both human evolution and disease.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.