New Results
DOUBLER: Unified Representation Learning of Biological Entities and Documents for Predicting Protein–Disease Relationships
View ORCID ProfileTimo Sztyler, View ORCID ProfileBrandon Malone
doi: https://doi.org/10.1101/2020.10.27.357202
Timo Sztyler
1NEC Laboratories Europe, Heidelberg, 69115, Germany
Brandon Malone
1NEC Laboratories Europe, Heidelberg, 69115, Germany
Posted October 27, 2020.
DOUBLER: Unified Representation Learning of Biological Entities and Documents for Predicting Protein–Disease Relationships
Timo Sztyler, Brandon Malone
bioRxiv 2020.10.27.357202; doi: https://doi.org/10.1101/2020.10.27.357202
Subject Area
Subject Areas
- Biochemistry (4796)
- Bioengineering (3335)
- Bioinformatics (14704)
- Biophysics (6649)
- Cancer Biology (5180)
- Cell Biology (7440)
- Clinical Trials (138)
- Developmental Biology (4374)
- Ecology (6890)
- Epidemiology (2057)
- Evolutionary Biology (9930)
- Genetics (7351)
- Genomics (9542)
- Immunology (4570)
- Microbiology (12702)
- Molecular Biology (4954)
- Neuroscience (28382)
- Paleontology (199)
- Pathology (809)
- Pharmacology and Toxicology (1394)
- Physiology (2025)
- Plant Biology (4516)
- Synthetic Biology (1302)
- Systems Biology (3919)
- Zoology (729)