Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Approximation to the distribution of fitness effects across functional categories in human segregating polymorphisms

Fernando Racimo, Joshua G. Schraiber
doi: https://doi.org/10.1101/002345
Fernando Racimo
1Department of Integrative Biology, University of California, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: fernandoracimo@gmail.com
Joshua G. Schraiber
1Department of Integrative Biology, University of California, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Quantifying the proportion of polymorphic mutations that are deleterious or neutral is of fundamental importance to our understanding of evolution, disease genetics and the maintenance of variation genome-wide. Here, we develop an approximation to the distribution of fitness effects (DFE) of segregating single-nucleotide mutations in humans. Unlike previous methods, we do not assume that synonymous mutations are neutral or not strongly selected, and we do not rely on fitting the DFE of all new nonsynonymous mutations to a single probability distribution, which is poorly motivated on a biological level. We rely on a previously developed method that utilizes a variety of published annotations (including conservation scores, protein deleteriousness estimates and regulatory data) to score all mutations in the human genome based on how likely they are to be affected by negative selection, controlling for mutation rate. We map this score to a scale of fitness coefficients via maximum likelihood using diffusion theory and a Poisson random field model on SNP data. Our method serves to approximate the deleterious DFE of mutations that are segregating, regardless of their genomic consequence. We can then compare the proportion of mutations that are negatively selected or neutral across various categories, including different types of regulatory sites. We observe that the distribution of intergenic polymorphisms is highly peaked at neutrality, while the distribution of nonsynonymous polymorphisms is bimodal, with a neutral peak and a second peak at s ≈ −10−4. Other types of polymorphisms have shapes that fall roughly in between these two. We find that transcriptional start sites, strong CTCF-enriched elements and enhancers are the regulatory categories with the largest proportion of deleterious polymorphisms.

Author Summary The relative frequencies of polymorphic mutations that are deleterious, nearly neutral and neutral is traditionally called the distribution of fitness effects (DFE). Obtaining an accurate approximation to this distribution in humans can help us understand the nature of disease and the mechanisms by which variation is maintained in the genome. Previous methods to approximate this distribution have relied on fitting the DFE of new mutations to a single probability distribution, like a normal or an exponential distribution. Generally, these methods also assume that a particular category of mutations, like synonymous changes, can be assumed to be neutral or nearly neutral. Here, we provide a novel method designed to reflect the strength of negative selection operating on any segregating site in the human genome. We use a maximum likelihood mapping approach to fit these scores to a scale of neutral and negative fitness coefficients. Finally, we compare the shape of the DFEs we obtain from this mapping for different types of functional categories. We observe the distribution of polymorphisms has a strong peak at neutrality, as well as a second peak of deleterious effects when restricting to nonsynonymous polymorphisms.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 19, 2014.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Approximation to the distribution of fitness effects across functional categories in human segregating polymorphisms
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Approximation to the distribution of fitness effects across functional categories in human segregating polymorphisms
Fernando Racimo, Joshua G. Schraiber
bioRxiv 002345; doi: https://doi.org/10.1101/002345
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Approximation to the distribution of fitness effects across functional categories in human segregating polymorphisms
Fernando Racimo, Joshua G. Schraiber
bioRxiv 002345; doi: https://doi.org/10.1101/002345

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetics
Subject Areas
All Articles
  • Animal Behavior and Cognition (3691)
  • Biochemistry (7800)
  • Bioengineering (5678)
  • Bioinformatics (21295)
  • Biophysics (10584)
  • Cancer Biology (8179)
  • Cell Biology (11947)
  • Clinical Trials (138)
  • Developmental Biology (6764)
  • Ecology (10401)
  • Epidemiology (2065)
  • Evolutionary Biology (13874)
  • Genetics (9709)
  • Genomics (13075)
  • Immunology (8150)
  • Microbiology (20021)
  • Molecular Biology (7859)
  • Neuroscience (43073)
  • Paleontology (321)
  • Pathology (1279)
  • Pharmacology and Toxicology (2260)
  • Physiology (3353)
  • Plant Biology (7232)
  • Scientific Communication and Education (1314)
  • Synthetic Biology (2008)
  • Systems Biology (5539)
  • Zoology (1128)