Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Glycowork: A Python package for glycan data science and machine learning

Luc Thomès, Rebekka Burkholz, View ORCID ProfileDaniel Bojar
doi: https://doi.org/10.1101/2021.04.22.440981
Luc Thomès
1Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden. Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rebekka Burkholz
2Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Bojar
1Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden. Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel Bojar
  • For correspondence: daniel.bojar@gu.se
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading
  • https://bojarlab.github.io/glycowork/

Back to top
PreviousNext
Posted April 22, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Glycowork: A Python package for glycan data science and machine learning
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Glycowork: A Python package for glycan data science and machine learning
Luc Thomès, Rebekka Burkholz, Daniel Bojar
bioRxiv 2021.04.22.440981; doi: https://doi.org/10.1101/2021.04.22.440981
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Glycowork: A Python package for glycan data science and machine learning
Luc Thomès, Rebekka Burkholz, Daniel Bojar
bioRxiv 2021.04.22.440981; doi: https://doi.org/10.1101/2021.04.22.440981

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4658)
  • Biochemistry (10311)
  • Bioengineering (7631)
  • Bioinformatics (26222)
  • Biophysics (13464)
  • Cancer Biology (10640)
  • Cell Biology (15358)
  • Clinical Trials (138)
  • Developmental Biology (8462)
  • Ecology (12771)
  • Epidemiology (2067)
  • Evolutionary Biology (16782)
  • Genetics (11368)
  • Genomics (15421)
  • Immunology (10566)
  • Microbiology (25081)
  • Molecular Biology (10170)
  • Neuroscience (54216)
  • Paleontology (398)
  • Pathology (1659)
  • Pharmacology and Toxicology (2878)
  • Physiology (4321)
  • Plant Biology (9207)
  • Scientific Communication and Education (1582)
  • Synthetic Biology (2543)
  • Systems Biology (6759)
  • Zoology (1455)