New Results
Negative Binomial factor regression with application to microbiome data analysis
Aditya K. Mishra, View ORCID ProfileChristian L. Müller
doi: https://doi.org/10.1101/2021.11.29.470304
Aditya K. Mishra
1Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, USA
Christian L. Müller
1Center for Computational Mathematics, Flatiron Institute, Simons Foundation, New York, USA
2Department of Statistics, LMU München, Munich, Germany
3Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
Posted November 29, 2021.
Negative Binomial factor regression with application to microbiome data analysis
Aditya K. Mishra, Christian L. Müller
bioRxiv 2021.11.29.470304; doi: https://doi.org/10.1101/2021.11.29.470304
Subject Area
Subject Areas
- Biochemistry (13408)
- Bioengineering (10208)
- Bioinformatics (32643)
- Biophysics (16806)
- Cancer Biology (13876)
- Cell Biology (19709)
- Clinical Trials (138)
- Developmental Biology (10657)
- Ecology (15769)
- Epidemiology (2067)
- Evolutionary Biology (20081)
- Genetics (13255)
- Genomics (18402)
- Immunology (13501)
- Microbiology (31614)
- Molecular Biology (13177)
- Neuroscience (68861)
- Paleontology (512)
- Pathology (2137)
- Pharmacology and Toxicology (3686)
- Physiology (5750)
- Plant Biology (11813)
- Synthetic Biology (3316)
- Systems Biology (8051)
- Zoology (1819)