New Results
Function-guided protein design by deep manifold sampling
View ORCID ProfileVladimir Gligorijević, Daniel Berenberg, View ORCID ProfileStephen Ra, View ORCID ProfileAndrew Watkins, Simon Kelow, Kyunghyun Cho, View ORCID ProfileRichard Bonneau
doi: https://doi.org/10.1101/2021.12.22.473759
Vladimir Gligorijević
1Prescient Design, Genentech
Daniel Berenberg
1Prescient Design, Genentech
2Department of Computer Science, Courant Institute of Mathematical Sciences, New York University
Stephen Ra
1Prescient Design, Genentech
Andrew Watkins
1Prescient Design, Genentech
Simon Kelow
1Prescient Design, Genentech
Kyunghyun Cho
1Prescient Design, Genentech
2Department of Computer Science, Courant Institute of Mathematical Sciences, New York University
3Center for Data Science, New York University
Richard Bonneau
1Prescient Design, Genentech
Posted December 23, 2021.
Function-guided protein design by deep manifold sampling
Vladimir Gligorijević, Daniel Berenberg, Stephen Ra, Andrew Watkins, Simon Kelow, Kyunghyun Cho, Richard Bonneau
bioRxiv 2021.12.22.473759; doi: https://doi.org/10.1101/2021.12.22.473759
Subject Area
Subject Areas
- Biochemistry (10347)
- Bioengineering (7660)
- Bioinformatics (26310)
- Biophysics (13507)
- Cancer Biology (10672)
- Cell Biology (15424)
- Clinical Trials (138)
- Developmental Biology (8490)
- Ecology (12808)
- Epidemiology (2067)
- Evolutionary Biology (16837)
- Genetics (11383)
- Genomics (15471)
- Immunology (10604)
- Microbiology (25187)
- Molecular Biology (10211)
- Neuroscience (54400)
- Paleontology (401)
- Pathology (1667)
- Pharmacology and Toxicology (2890)
- Physiology (4335)
- Plant Biology (9237)
- Synthetic Biology (2556)
- Systems Biology (6774)
- Zoology (1461)