Summary
The androgen receptor (AR) is a steroid receptor and master transcription factor that governs gene expression programs required for luminal development of prostate epithelium, formation of muscle tissue and maintenance of the male phenotype. AR misregulation is a hallmark of multiple malignancies, including prostate cancer, where AR hyperactivation and expansion of its transcriptome occur in part through AR gene amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR’s individual domains and its protein cofactors cooperate to bind DNA have remained elusive. Using a combination of reconstitution biochemistry and single particle cryo-electron microscopy (EM), we have isolated three conformational states of AR bound to DNA. We observe that AR forms a non-obligate dimer, with the buried dimer interface utilized by related ancestral nuclear receptors repurposed to facilitate cooperative DNA binding. We identify surfaces bridging AR’s domains responsible for allosteric communication, that are compromised in partial androgen insensitivity syndrome (PAIS), and are reinforced by AR’s oncoprotein cofactor, ERG, and DNA binding site motifs. Finally, we present evidence that this plastic dimer interface for transcriptional activation may have been adopted by AR at the expense of DNA binding. Our work highlights how fine-tuning of AR’s cooperative interactions translate to consequences in development and disease.
Competing Interest Statement
Dr. Sawyers serves on the Board of Directors of Novartis, is a co-founder of ORIC Pharmaceuticals and co-inventor of enzalutamide and apalutamide. He is a science advisor to Agios, Beigene, Blueprint, Column Group, Foghorn, Housey Pharma, Nextech, KSQ, Petra and PMV. He was a co-founder of Seragon, purchased by Genentech/Roche in 2014.