Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Paired evaluation defines performance landscapes for machine learning models

View ORCID ProfileMaulik K. Nariya, View ORCID ProfileCaitlin E. Mills, View ORCID ProfilePeter K. Sorger, View ORCID ProfileArtem Sokolov
doi: https://doi.org/10.1101/2022.09.07.507020
Maulik K. Nariya
1Department of Systems Biology, Harvard Medical School, Boston, MA, USA
2Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Maulik K. Nariya
Caitlin E. Mills
2Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Caitlin E. Mills
Peter K. Sorger
1Department of Systems Biology, Harvard Medical School, Boston, MA, USA
2Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Peter K. Sorger
Artem Sokolov
1Department of Systems Biology, Harvard Medical School, Boston, MA, USA
3Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Artem Sokolov
  • For correspondence: artem_sokolov@hms.harvard.edu lsp-papers@hms.harvard.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading
  • https://adknowledgeportal.org

  • https://github.com/labsyspharm/brca-profiling

  • https://github.com/labsyspharm/lpocv

Back to top
PreviousNext
Posted September 12, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Paired evaluation defines performance landscapes for machine learning models
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Paired evaluation defines performance landscapes for machine learning models
Maulik K. Nariya, Caitlin E. Mills, Peter K. Sorger, Artem Sokolov
bioRxiv 2022.09.07.507020; doi: https://doi.org/10.1101/2022.09.07.507020
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Paired evaluation defines performance landscapes for machine learning models
Maulik K. Nariya, Caitlin E. Mills, Peter K. Sorger, Artem Sokolov
bioRxiv 2022.09.07.507020; doi: https://doi.org/10.1101/2022.09.07.507020

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4662)
  • Biochemistry (10316)
  • Bioengineering (7645)
  • Bioinformatics (26251)
  • Biophysics (13484)
  • Cancer Biology (10652)
  • Cell Biology (15366)
  • Clinical Trials (138)
  • Developmental Biology (8470)
  • Ecology (12779)
  • Epidemiology (2067)
  • Evolutionary Biology (16800)
  • Genetics (11373)
  • Genomics (15435)
  • Immunology (10584)
  • Microbiology (25089)
  • Molecular Biology (10175)
  • Neuroscience (54253)
  • Paleontology (398)
  • Pathology (1662)
  • Pharmacology and Toxicology (2884)
  • Physiology (4329)
  • Plant Biology (9216)
  • Scientific Communication and Education (1583)
  • Synthetic Biology (2545)
  • Systems Biology (6763)
  • Zoology (1459)