New Results
A Framework for Designing Efficient Deep Learning-Based Genomic Basecallers
View ORCID ProfileGagandeep Singh, Mohammed Alser, Alireza Khodamoradi, Kristof Denolf, Can Firtina, Meryem Banu Cavlak, Henk Corporaal, Onur Mutlu
doi: https://doi.org/10.1101/2022.11.20.517297
Gagandeep Singh
aETH Zürich
Mohammed Alser
aETH Zürich
Alireza Khodamoradi
bAMD
Kristof Denolf
bAMD
Can Firtina
aETH Zürich
Meryem Banu Cavlak
aETH Zürich
Henk Corporaal
cEindhoven University of Technology
Posted December 08, 2022.
A Framework for Designing Efficient Deep Learning-Based Genomic Basecallers
Gagandeep Singh, Mohammed Alser, Alireza Khodamoradi, Kristof Denolf, Can Firtina, Meryem Banu Cavlak, Henk Corporaal, Onur Mutlu
bioRxiv 2022.11.20.517297; doi: https://doi.org/10.1101/2022.11.20.517297
Subject Area
Subject Areas
- Biochemistry (9173)
- Bioengineering (6806)
- Bioinformatics (24064)
- Biophysics (12156)
- Cancer Biology (9565)
- Cell Biology (13825)
- Clinical Trials (138)
- Developmental Biology (7658)
- Ecology (11737)
- Epidemiology (2066)
- Evolutionary Biology (15543)
- Genetics (10672)
- Genomics (14362)
- Immunology (9513)
- Microbiology (22906)
- Molecular Biology (9129)
- Neuroscience (49127)
- Paleontology (358)
- Pathology (1487)
- Pharmacology and Toxicology (2584)
- Physiology (3851)
- Plant Biology (8351)
- Synthetic Biology (2301)
- Systems Biology (6206)
- Zoology (1303)