New Results
Using machine learning to detect coronaviruses potentially infectious to humans
Georgina Gonzalez-Isunza, M. Zaki Jawaid, Pengyu Liu, Daniel L. Cox, Mariel Vazquez, Javier Arsuaga
doi: https://doi.org/10.1101/2022.12.11.520008
Georgina Gonzalez-Isunza
1University of California, Department of Microbiology & Molecular Genetics, Davis, CA, USA
M. Zaki Jawaid
4Department of Physics, University of California, Davis, USA
Pengyu Liu
1University of California, Department of Microbiology & Molecular Genetics, Davis, CA, USA
Daniel L. Cox
4Department of Physics, University of California, Davis, USA
Mariel Vazquez
1University of California, Department of Microbiology & Molecular Genetics, Davis, CA, USA
3Department of Mathematics, University of California, Davis, CA, USA
Javier Arsuaga
2University of California, Department of Molecular & Cellular Biology, Davis, CA, USA
3Department of Mathematics, University of California, Davis, CA, USA
Posted December 12, 2022.
Using machine learning to detect coronaviruses potentially infectious to humans
Georgina Gonzalez-Isunza, M. Zaki Jawaid, Pengyu Liu, Daniel L. Cox, Mariel Vazquez, Javier Arsuaga
bioRxiv 2022.12.11.520008; doi: https://doi.org/10.1101/2022.12.11.520008
Subject Area
Subject Areas
- Biochemistry (10770)
- Bioengineering (8030)
- Bioinformatics (27243)
- Biophysics (13955)
- Cancer Biology (11105)
- Cell Biology (16022)
- Clinical Trials (138)
- Developmental Biology (8767)
- Ecology (13262)
- Epidemiology (2067)
- Evolutionary Biology (17337)
- Genetics (11677)
- Genomics (15901)
- Immunology (11010)
- Microbiology (26028)
- Molecular Biology (10624)
- Neuroscience (56439)
- Paleontology (417)
- Pathology (1729)
- Pharmacology and Toxicology (2999)
- Physiology (4538)
- Plant Biology (9614)
- Synthetic Biology (2682)
- Systems Biology (6967)
- Zoology (1508)