New Results
SuPreMo: a computational tool for streamlining in silico perturbation using sequence-based predictive models
View ORCID ProfileKetrin Gjoni, View ORCID ProfileKatherine S. Pollard
doi: https://doi.org/10.1101/2023.11.03.565556
Ketrin Gjoni
1Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
2Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
Katherine S. Pollard
1Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
2Department of Epidemiology & Biostatistics, University of California, San Francisco, CA 94158, USA
3Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
Posted November 05, 2023.
SuPreMo: a computational tool for streamlining in silico perturbation using sequence-based predictive models
Ketrin Gjoni, Katherine S. Pollard
bioRxiv 2023.11.03.565556; doi: https://doi.org/10.1101/2023.11.03.565556
Subject Area
Subject Areas
- Biochemistry (13436)
- Bioengineering (10224)
- Bioinformatics (32673)
- Biophysics (16849)
- Cancer Biology (13902)
- Cell Biology (19737)
- Clinical Trials (138)
- Developmental Biology (10672)
- Ecology (15792)
- Epidemiology (2067)
- Evolutionary Biology (20102)
- Genetics (13262)
- Genomics (18416)
- Immunology (13512)
- Microbiology (31655)
- Molecular Biology (13193)
- Neuroscience (68940)
- Paleontology (512)
- Pathology (2140)
- Pharmacology and Toxicology (3690)
- Physiology (5756)
- Plant Biology (11836)
- Synthetic Biology (3317)
- Systems Biology (8065)
- Zoology (1821)