New Results
Combinatorial prediction of therapeutic perturbations using causally-inspired neural networks
Guadalupe Gonzalez, Isuru Herath, Kirill Veselkov, Michael Bronstein, View ORCID ProfileMarinka Zitnik
doi: https://doi.org/10.1101/2024.01.03.573985
Guadalupe Gonzalez
1Imperial College London, London, UK
2Prescient Design, Genentech, South San Francisco, CA, USA
3F. Hoffmann-La Roche Ltd, Basel, Switzerland
Isuru Herath
4Merck & Co., South San Francisco, CA, USA
5Cornell University, Ithaca, NY, USA
Kirill Veselkov
1Imperial College London, London, UK
Michael Bronstein
6University of Oxford, Oxford, UK
Marinka Zitnik
7Harvard Medical School, Boston, MA, USA
8Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA
9Broad Institute of MIT and Harvard, Cambridge, MA, USA
10Harvard Data Science Initiative, Cambridge, MA, USA
Posted January 08, 2024.
Combinatorial prediction of therapeutic perturbations using causally-inspired neural networks
Guadalupe Gonzalez, Isuru Herath, Kirill Veselkov, Michael Bronstein, Marinka Zitnik
bioRxiv 2024.01.03.573985; doi: https://doi.org/10.1101/2024.01.03.573985
Subject Area
Subject Areas
- Biochemistry (12762)
- Bioengineering (9646)
- Bioinformatics (31196)
- Biophysics (16071)
- Cancer Biology (13145)
- Cell Biology (18803)
- Clinical Trials (138)
- Developmental Biology (10172)
- Ecology (15156)
- Epidemiology (2067)
- Evolutionary Biology (19370)
- Genetics (12853)
- Genomics (17751)
- Immunology (12877)
- Microbiology (30142)
- Molecular Biology (12578)
- Neuroscience (65692)
- Paleontology (485)
- Pathology (2033)
- Pharmacology and Toxicology (3508)
- Physiology (5433)
- Plant Biology (11267)
- Synthetic Biology (3110)
- Systems Biology (7757)
- Zoology (1754)