New Results
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
View ORCID ProfileConstantin Ahlmann-Eltze, View ORCID ProfileSimon Anders
doi: https://doi.org/10.1101/661496
Constantin Ahlmann-Eltze
Center for Molecular Biology (ZMBH), University of Heidelberg, Germany
Simon Anders
Center for Molecular Biology (ZMBH), University of Heidelberg, Germany
Posted June 06, 2019.
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
Constantin Ahlmann-Eltze, Simon Anders
bioRxiv 661496; doi: https://doi.org/10.1101/661496
Subject Area
Subject Areas
- Biochemistry (7584)
- Bioengineering (5533)
- Bioinformatics (20816)
- Biophysics (10341)
- Cancer Biology (7992)
- Cell Biology (11652)
- Clinical Trials (138)
- Developmental Biology (6616)
- Ecology (10222)
- Epidemiology (2065)
- Evolutionary Biology (13639)
- Genetics (9553)
- Genomics (12856)
- Immunology (7928)
- Microbiology (19561)
- Molecular Biology (7674)
- Neuroscience (42165)
- Paleontology (308)
- Pathology (1259)
- Pharmacology and Toxicology (2204)
- Physiology (3271)
- Plant Biology (7052)
- Synthetic Biology (1953)
- Systems Biology (5431)
- Zoology (1119)