New Results
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
View ORCID ProfileConstantin Ahlmann-Eltze, View ORCID ProfileSimon Anders
doi: https://doi.org/10.1101/661496
Constantin Ahlmann-Eltze
Center for Molecular Biology (ZMBH), University of Heidelberg, Germany
Simon Anders
Center for Molecular Biology (ZMBH), University of Heidelberg, Germany
Posted June 06, 2019.
proDA: Probabilistic Dropout Analysis for Identifying Differentially Abundant Proteins in Label-Free Mass Spectrometry
Constantin Ahlmann-Eltze, Simon Anders
bioRxiv 661496; doi: https://doi.org/10.1101/661496
Subject Area
Subject Areas
- Biochemistry (7336)
- Bioengineering (5307)
- Bioinformatics (20221)
- Biophysics (9990)
- Cancer Biology (7715)
- Cell Biology (11280)
- Clinical Trials (138)
- Developmental Biology (6426)
- Ecology (9929)
- Epidemiology (2065)
- Evolutionary Biology (13296)
- Genetics (9353)
- Genomics (12566)
- Immunology (7686)
- Microbiology (18979)
- Molecular Biology (7428)
- Neuroscience (40944)
- Paleontology (300)
- Pathology (1226)
- Pharmacology and Toxicology (2132)
- Physiology (3146)
- Plant Biology (6850)
- Synthetic Biology (1893)
- Systems Biology (5306)
- Zoology (1087)