New Results
Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays
Rajiv Movva, Peyton Greenside, Georgi K. Marinov, Surag Nair, Avanti Shrikumar, Anshul Kundaje
doi: https://doi.org/10.1101/393926
Rajiv Movva
1The Harker School, San Jose, CA, USA
2Department of Genetics, Stanford University, Stanford, CA, USA
Peyton Greenside
3Biomedical Informatics Training Program, Stanford University, Stanford, CA, USA
Georgi K. Marinov
2Department of Genetics, Stanford University, Stanford, CA, USA
Surag Nair
4Department of Computer Science, Stanford University, Stanford, CA, USA
Avanti Shrikumar
4Department of Computer Science, Stanford University, Stanford, CA, USA
Anshul Kundaje
2Department of Genetics, Stanford University, Stanford, CA, USA
4Department of Computer Science, Stanford University, Stanford, CA, USA
Posted June 07, 2019.
Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays
Rajiv Movva, Peyton Greenside, Georgi K. Marinov, Surag Nair, Avanti Shrikumar, Anshul Kundaje
bioRxiv 393926; doi: https://doi.org/10.1101/393926
Subject Area
Subject Areas
- Biochemistry (10821)
- Bioengineering (8061)
- Bioinformatics (27370)
- Biophysics (14014)
- Cancer Biology (11157)
- Cell Biology (16095)
- Clinical Trials (138)
- Developmental Biology (8806)
- Ecology (13323)
- Epidemiology (2067)
- Evolutionary Biology (17390)
- Genetics (11704)
- Genomics (15957)
- Immunology (11057)
- Microbiology (26148)
- Molecular Biology (10674)
- Neuroscience (56714)
- Paleontology (422)
- Pathology (1737)
- Pharmacology and Toxicology (3012)
- Physiology (4566)
- Plant Biology (9662)
- Synthetic Biology (2697)
- Systems Biology (6993)
- Zoology (1513)