Abstract
The effector functions of macrophages across the spectrum of activation states in vitro are linked to profound metabolic rewiring. However, the metabolism of macrophages remains poorly characterized in vivo. To assess changes in the intracellular metabolism of macrophages in their native inflammatory microenvironment, we employed two-photon fluorescence lifetime imaging microscopy (FLIM) of metabolic coenzymes NAD(P)H and FAD. We found that pro-inflammatory activation of macrophages in vivo was associated with a decrease in the optical redox ratio [NAD(P)H/(NAD(P)H+FAD)] relative to a pro-resolving population during both infected and sterile inflammation. FLIM also resolved temporal changes in the optical redox ratio and lifetime variables of NAD(P)H in macrophages over the course of sterile inflammation. Collectively, we show that non-invasive and label-free imaging of autofluorescent metabolic coenzymes is sensitive to dynamic changes in macrophage activation in interstitial tissues. This imaging-based approach has broad applications in immunometabolism by probing in real time the temporal and spatial metabolic regulation of immune cell function in a live organism.
Significance Metabolic regulation of macrophage effector functions has recently emerged as a key concept in immune cell biology. Studies rely on in vitro and ex vivo approaches to study macrophage metabolism, however the high plasticity of these cells suggest that removal from their native microenvironment may induce changes in their intracellular metabolism. Here, we show that fluorescence lifetime imaging microscopy of metabolic coenzymes captures dynamic changes in the metabolic activity of macrophages while maintaining them in their endogenous microenvironment. This approach also resolves variations on a single-cell level, in contrast to bulk measurements provided by traditional biochemical assays, making it a potentially valuable tool in the field of immunometabolism.
Competing Interest Statement
The authors have declared no competing interest.